Open Source Reverse ETL For Everyone With Grouparoo

Data Engineering Podcast - Podcast autorstwa Tobias Macey - Niedziele

Kategorie:

Summary Reverse ETL is a product category that evolved from the landscape of customer data platforms with a number of companies offering their own implementation of it. While struggling with the work of automating data integration workflows with marketing, sales, and support tools Brian Leonard accidentally discovered this need himself and turned it into the open source framework Grouparoo. In this episode he explains why he decided to turn these efforts into an open core business, how the platform is implemented, and the benefits of having an open source contender in the landscape of operational analytics products. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! StreamSets DataOps Platform is the world’s first single platform for building smart data pipelines across hybrid and multi-cloud architectures. Build, run, monitor and manage data pipelines confidently with an end-to-end data integration platform that’s built for constant change. Amp up your productivity with an easy-to-navigate interface and 100s of pre-built connectors. And, get pipelines and new hires up and running quickly with powerful, reusable components that work across batch and streaming. Once you’re up and running, your smart data pipelines are resilient to data drift. Those ongoing and unexpected changes in schema, semantics, and infrastructure. Finally, one single pane of glass for operating and monitoring all your data pipelines. The full transparency and control you desire for your data operations. Get started building pipelines in minutes for free at dataengineeringpodcast.com/streamsets. The first 10 listeners of the podcast that subscribe to StreamSets’ Professional Tier, receive 2 months free after their first month. Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Your host is Tobias Macey and today I’m interviewing Brian Leonard about Grouparoo, an open source framework for managing your reverse ETL pipelines Interview Introduction How did you get involved in the area of data management? Can you describe what Grouparoo is and the story behind it? What are the core requirements for building a reverse ETL system? What are the additional capabilities that users of the system ask for as they get more advanced in their usage? Who is your target user for Grouparoo and how does that influence your priorities on feature development and UX design? What are the benefits of building an open source core for a reverse ETL platform as compared to the other commercial options? Can you describe the architecture and implementation of the Grouparoo project? What are the additional systems that you have built to support the hosted offering? How have the design and goals of the project changed since you first started working on it? What is the workflow for getting Grouparoo deployed and set up with an initial pipeline? How does Grouparoo handle model and schema evolution and potential mismatch in the data warehouse and destination systems? What is the process for building a new integration and getting it included in the official list of plugins? What is your strategy/philosophy around which features are included in the open source vs. hosted/enterprise offerings? What are the most interesting, innovative, or unexpected ways that you have seen Grouparoo used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on Grouparoo? When is Grouparoo the wrong choice? What do you have planned for the future of Grouparoo? Contact Info LinkedIn @bleonard on Twitter Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don’t forget to check out our other show, Podcast.__init__ to learn about the Python language, its community, and the innovative ways it is being used. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email [email protected]) with your story. To help other people find the show please leave a review on iTunes and tell your friends and co-workers Links Grouparoo GitHub Task Rabbit Snowflake Podcast Episode Looker Podcast Episode Customer Data Platform Podcast Episode dbt Open Source Data Stack Conference The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast

Visit the podcast's native language site