#115 Using Time Series to Estimate Uncertainty, with Nate Haines

Learning Bayesian Statistics - Podcast autorstwa Alexandre Andorra

Kategorie:

Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!My Intuitive Bayes Online Courses1:1 Mentorship with meOur theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!Visit our Patreon page to unlock exclusive Bayesian swag ;)Takeaways:State space models and traditional time series models are well-suited to forecast loss ratios in the insurance industry, although actuaries have been slow to adopt modern statistical methods.Working with limited data is a challenge, but informed priors and hierarchical models can help improve the modeling process.Bayesian model stacking allows for blending together different model predictions and taking the best of both (or all if more than 2 models) worlds.Model comparison is done using out-of-sample performance metrics, such as the expected log point-wise predictive density (ELPD). Brute leave-future-out cross-validation is often used due to the time-series nature of the data.Stacking or averaging models are trained on out-of-sample performance metrics to determine the weights for blending the predictions. Model stacking can be a powerful approach for combining predictions from candidate models. Hierarchical stacking in particular is useful when weights are assumed to vary according to covariates.BayesBlend is a Python package developed by Ledger Investing that simplifies the implementation of stacking models, including pseudo Bayesian model averaging, stacking, and hierarchical stacking.Evaluating the performance of patient time series models requires considering multiple metrics, including log likelihood-based metrics like ELPD, as well as more absolute metrics like RMSE and mean absolute error.Using robust variants of metrics like ELPD can help address issues with extreme outliers. For example, t-distribution estimators of ELPD as opposed to sample sum/mean estimators.It is important to evaluate model performance from different perspectives and consider the trade-offs between different metrics. Evaluating models based solely on traditional metrics can limit understanding and trust in the model. Consider additional factors such as interpretability, maintainability, and productionization.Simulation-based calibration (SBC) is a valuable tool for assessing parameter estimation and model correctness. It allows for the interpretation of model parameters and the identification of coding errors.In industries like insurance, where regulations may restrict model choices, classical statistical approaches still play a significant role. However, there is potential for Bayesian methods and generative AI in certain areas.

Visit the podcast's native language site