Best AI papers explained
Podcast autorstwa Enoch H. Kang
506 Odcinki
-
The Art of Scaling Reinforcement Learning Compute for LLMs
Opublikowany: 16.10.2025 -
A small number of samples can poison LLMs of any size
Opublikowany: 16.10.2025 -
Dual Goal Representations
Opublikowany: 14.10.2025 -
Welcome to the Era of Experience
Opublikowany: 14.10.2025 -
Value Flows: Flow-Based Distributional Reinforcement Learning
Opublikowany: 14.10.2025 -
Self-Adapting Language Models
Opublikowany: 12.10.2025 -
The Markovian Thinker
Opublikowany: 12.10.2025 -
Moloch’s Bargain: emergent misalignment when LLMs compete for audiences
Opublikowany: 12.10.2025 -
Transformer Predictor Dynamics and Task Diversity
Opublikowany: 11.10.2025 -
Base models know how to reason, thinking models learn when
Opublikowany: 11.10.2025 -
Spectrum tuning: Post-training for distributional coverage and in-context steerability
Opublikowany: 11.10.2025 -
Understanding Prompt Tuning and In-Context Learning via Meta-Learning
Opublikowany: 11.10.2025 -
MLPs Learn In-Context on Regression and Classification tasks
Opublikowany: 11.10.2025 -
Is Pre-Training Truly Better than Meta-Learning?
Opublikowany: 11.10.2025 -
Agentic Context Engineering: Evolving Contexts for Self-Improving Language Models
Opublikowany: 11.10.2025 -
Do LLMs Recognize Your Preferences? Evaluating Personalized Preference Following in LLMs
Opublikowany: 9.10.2025 -
Learning dynamics of LLM finetuning
Opublikowany: 9.10.2025 -
Iterative Data Smoothing: Mitigating Reward Overfitting and Overoptimization in RLHF
Opublikowany: 9.10.2025 -
OpenAI Agent Builder and n8n: Orchestrating Reasoning Versus Automating Process
Opublikowany: 8.10.2025 -
Training Agents Inside of Scalable World Models
Opublikowany: 8.10.2025
Cut through the noise. We curate and break down the most important AI papers so you don’t have to.
