Brain Inspired
Podcast autorstwa Paul Middlebrooks - Środy
155 Odcinki
-
BI 086 Ken Stanley: Open-Endedness
Opublikowany: 12.10.2020 -
BI 085 Ida Momennejad: Learning Representations
Opublikowany: 30.09.2020 -
BI 084 György Buzsáki and David Poeppel
Opublikowany: 15.09.2020 -
BI 083 Jane Wang: Evolving Altruism in AI
Opublikowany: 5.09.2020 -
BI 082 Steve Grossberg: Adaptive Resonance Theory
Opublikowany: 26.08.2020 -
BI 081 Pieter Roelfsema: Brain-propagation
Opublikowany: 16.08.2020 -
BI 080 Daeyeol Lee: Birth of Intelligence
Opublikowany: 6.08.2020 -
BI 079 Romain Brette: The Coding Brain Metaphor
Opublikowany: 27.07.2020 -
BI 078 David and John Krakauer: Part 2
Opublikowany: 17.07.2020 -
BI 077 David and John Krakauer: Part 1
Opublikowany: 14.07.2020 -
BI 076 Olaf Sporns: Network Neuroscience
Opublikowany: 4.07.2020 -
BI 075 Jim DiCarlo: Reverse Engineering Vision
Opublikowany: 24.06.2020 -
BI 074 Ginger Campbell: Are You Sure?
Opublikowany: 16.06.2020 -
BI 073 Megan Peters: Consciousness and Metacognition
Opublikowany: 10.06.2020 -
BI 072 Mazviita Chirimuuta: Understanding, Prediction, and Reality
Opublikowany: 1.06.2020
Neuroscience and artificial intelligence work better together. Brain inspired is a celebration and exploration of the ideas driving our progress to understand intelligence. I interview experts about their work at the interface of neuroscience, artificial intelligence, cognitive science, philosophy, psychology, and more: the symbiosis of these overlapping fields, how they inform each other, where they differ, what the past brought us, and what the future brings. Topics include computational neuroscience, supervised machine learning, unsupervised learning, reinforcement learning, deep learning, convolutional and recurrent neural networks, decision-making science, AI agents, backpropagation, credit assignment, neuroengineering, neuromorphics, emergence, philosophy of mind, consciousness, general AI, spiking neural networks, data science, and a lot more. The podcast is not produced for a general audience. Instead, it aims to educate, challenge, inspire, and hopefully entertain those interested in learning more about neuroscience and AI.