Data Engineering Podcast
Podcast autorstwa Tobias Macey - Niedziele
Kategorie:
419 Odcinki
-
Unpacking Fauna: A Global Scale Cloud Native Database - Episode 78
Opublikowany: 22.04.2019 -
Index Your Big Data With Pilosa For Faster Analytics - Episode 77
Opublikowany: 15.04.2019 -
Serverless Data Pipelines On DataCoral - Episode 76
Opublikowany: 8.04.2019 -
Why Analytics Projects Fail And What To Do About It - Episode 75
Opublikowany: 1.04.2019 -
Building An Enterprise Data Fabric At CluedIn - Episode 74
Opublikowany: 25.03.2019 -
A DataOps vs DevOps Cookoff In The Data Kitchen - Episode 73
Opublikowany: 18.03.2019 -
Customer Analytics At Scale With Segment - Episode 72
Opublikowany: 4.03.2019 -
Deep Learning For Data Engineers - Episode 71
Opublikowany: 25.02.2019 -
The Alluxio Distributed Storage System - Episode 70
Opublikowany: 19.02.2019 -
Building Machine Learning Projects In The Enterprise - Episode 69
Opublikowany: 11.02.2019 -
Cleaning And Curating Open Data For Archaeology - Episode 68
Opublikowany: 4.02.2019 -
Managing Database Access Control For Teams With strongDM - Episode 67
Opublikowany: 29.01.2019 -
Building Enterprise Big Data Systems At LEGO - Episode 66
Opublikowany: 21.01.2019 -
TimescaleDB: The Timeseries Database Built For SQL And Scale - Episode 65
Opublikowany: 14.01.2019 -
Performing Fast Data Analytics Using Apache Kudu - Episode 64
Opublikowany: 7.01.2019 -
Simplifying Continuous Data Processing Using Stream Native Storage In Pravega with Tom Kaitchuck - Episode 63
Opublikowany: 31.12.2018 -
Continuously Query Your Time-Series Data Using PipelineDB with Derek Nelson and Usman Masood - Episode 62
Opublikowany: 24.12.2018 -
Advice On Scaling Your Data Pipeline Alongside Your Business with Christian Heinzmann - Episode 61
Opublikowany: 17.12.2018 -
Putting Apache Spark Into Action with Jean Georges Perrin - Episode 60
Opublikowany: 10.12.2018 -
Apache Zookeeper As A Building Block For Distributed Systems with Patrick Hunt - Episode 59
Opublikowany: 3.12.2018
This show goes behind the scenes for the tools, techniques, and difficulties associated with the discipline of data engineering. Databases, workflows, automation, and data manipulation are just some of the topics that you will find here.