Data Science at Home

Podcast autorstwa Francesco Gadaleta

Kategorie:

263 Odcinki

  1. Deeplearning is easier when it is illustrated (with Jon Krohn) (Ep. 86)

    Opublikowany: 5.11.2019
  2. More powerful deep learning with transformers (Ep. 84)

    Opublikowany: 27.10.2019
  3. What is wrong with reinforcement learning? (Ep. 82)

    Opublikowany: 15.10.2019
  4. Have you met Shannon? Conversation with Jimmy Soni and Rob Goodman about one of the greatest minds in history (Ep. 81)

    Opublikowany: 10.10.2019
  5. Attacking machine learning for fun and profit (with the authors of SecML Ep. 80)

    Opublikowany: 1.10.2019
  6. [RB] How to scale AI in your organisation (Ep. 79)

    Opublikowany: 26.09.2019
  7. Replicating GPT-2, the most dangerous NLP model (with Aaron Gokaslan) (Ep. 78)

    Opublikowany: 23.09.2019
  8. How to generate very large images with GANs (Ep. 76)

    Opublikowany: 6.09.2019
  9. How to cluster tabular data with Markov Clustering (Ep. 73)

    Opublikowany: 20.08.2019
  10. Waterfall or Agile? The best methodology for AI and machine learning (Ep. 72)

    Opublikowany: 14.08.2019
  11. Training neural networks faster without GPU (Ep. 71)

    Opublikowany: 6.08.2019
  12. Validate neural networks without data with Dr. Charles Martin (Ep. 70)

    Opublikowany: 23.07.2019
  13. Complex video analysis made easy with Videoflow (Ep. 69)

    Opublikowany: 16.07.2019
  14. Episode 68: AI and the future of banking with Chris Skinner [RB]

    Opublikowany: 9.07.2019
  15. Episode 67: Classic Computer Science Problems in Python

    Opublikowany: 2.07.2019
  16. Episode 66: More intelligent machines with self-supervised learning

    Opublikowany: 25.06.2019
  17. Episode 65: AI knows biology. Or does it?

    Opublikowany: 23.06.2019
  18. Episode 64: Get the best shot at NLP sentiment analysis

    Opublikowany: 14.06.2019
  19. Episode 63: Financial time series and machine learning

    Opublikowany: 4.06.2019
  20. Episode 62: AI and the future of banking with Chris Skinner

    Opublikowany: 28.05.2019

10 / 14

Artificial Intelligence, algorithms and tech tales that are shaping the world

Visit the podcast's native language site