History of Philosophy Without Any Gaps
Podcast autorstwa Peter Adamson - Niedziele
485 Odcinki
-
HoP 144 - Miracle Worker - al-Ghazali against the Philosophers
Opublikowany: 6.10.2013 -
HoP 143 - Special Delivery - al-Ghazali
Opublikowany: 29.09.2013 -
HoP 142 - Dimitri Gutas on Avicenna
Opublikowany: 22.09.2013 -
HoP 141 - Into Thin Air - Avicenna on the Soul
Opublikowany: 15.09.2013 -
HoP 140 - By All Means Necessary - Avicenna on God
Opublikowany: 4.08.2013 -
HoP 139 - By the Time I Get to Phoenix - Avicenna on Existence
Opublikowany: 28.07.2013 -
HoP 138 - The Self-Made Man - Avicenna's Life and Works
Opublikowany: 21.07.2013 -
HoP 137 - God Willing – the Asharites
Opublikowany: 14.07.2013 -
HoP 136 - Farhad Daftary on the Ismailis
Opublikowany: 7.07.2013 -
HoP 135 - Undercover Brothers – Philosophy in the Buyid Age
Opublikowany: 30.06.2013 -
HoP 134 - Balancing Acts - Arabic Ethical Literature
Opublikowany: 23.06.2013 -
HoP 133 - Strings Attached - Music and Philosophy
Opublikowany: 16.06.2013 -
HoP 132 - Eye of the Beholder - Theories of Vision
Opublikowany: 9.06.2013 -
HoP 131 - Deborah Black on al-Farabi's Epistemology
Opublikowany: 2.06.2013 -
HoP 130 - State of Mind - al-Farabi on Religion and Politics
Opublikowany: 26.05.2013 -
HoP 129 - The Second Master - al-Farabi
Opublikowany: 19.05.2013 -
HoP 128 - Aristotelian Society - the Baghdad School
Opublikowany: 12.05.2013 -
HoP 127 - Peter E Pormann on Medicine in the Islamic World
Opublikowany: 5.05.2013 -
HoP 126 - High Five - al-Razi
Opublikowany: 28.04.2013 -
HoP 125 - Reasoned Belief - Saadia Gaon
Opublikowany: 21.04.2013
Peter Adamson, Professor of Philosophy at the LMU in Munich and at King’s College London, takes listeners through the history of philosophy, ”without any gaps.” The series looks at the ideas, lives and historical context of the major philosophers as well as the lesser-known figures of the tradition. www.historyofphilosophy.net. NOTE: iTunes shows only the most recent 300 episodes; subscribe on iTunes or go to a different platform for the whole series.
