The Data Exchange with Ben Lorica

Podcast autorstwa Ben Lorica - Czwartki

Czwartki

Kategorie:

281 Odcinki

  1. Unleashing the power of large language models

    Opublikowany: 18.08.2022
  2. Building production-ready machine learning pipelines

    Opublikowany: 11.08.2022
  3. Machine Learning at Gong

    Opublikowany: 4.08.2022
  4. Data Infrastructure for Computer Vision

    Opublikowany: 28.07.2022
  5. How DALL·E works

    Opublikowany: 21.07.2022
  6. Scalable, end-to-end machine learning, for everyone

    Opublikowany: 14.07.2022
  7. Orchestration and Pipelines for Data Scientists

    Opublikowany: 7.07.2022
  8. Dataframes at scale

    Opublikowany: 30.06.2022
  9. Software-Defined Assets

    Opublikowany: 23.06.2022
  10. Adversarial Machine Learning

    Opublikowany: 16.06.2022
  11. Orchestrating Machine Learning Applications

    Opublikowany: 9.06.2022
  12. Narrative AI

    Opublikowany: 2.06.2022
  13. Machine Learning Model Observability

    Opublikowany: 26.05.2022
  14. Dataflow Automation

    Opublikowany: 19.05.2022
  15. Practical Machine Learning and Deep learning

    Opublikowany: 12.05.2022
  16. Machine Learning for Optimization

    Opublikowany: 5.05.2022
  17. Efficient Scaling of Language Models

    Opublikowany: 28.04.2022
  18. Data Science at Stitch Fix

    Opublikowany: 21.04.2022
  19. The 2022 AI Index

    Opublikowany: 14.04.2022
  20. Why You Need A Time-Series Database

    Opublikowany: 7.04.2022

8 / 15

A series of informal conversations with thought leaders, researchers, practitioners, and writers on a wide range of topics in technology, science, and of course big data, data science, artificial intelligence, and related applications. Anchored by Ben Lorica (@BigData), the Data Exchange also features a roundup of the most important stories from the worlds of data, machine learning and AI. Detailed show notes for each episode can be found on https://thedataexchange.media/ The Data Exchange podcast is a production of Gradient Flow [https://gradientflow.com/].

Visit the podcast's native language site