34 Odcinki

  1. 📡 Building Scalable ML Models with Natanel Davidovits

    Opublikowany: 16.12.2024
  2. 💼 AI in the Enterprise with Jeremie Dreyfuss

    Opublikowany: 31.10.2024
  3. 🌲 Machine Learning in Agriculture: Scaling AI for Crop Management with Dror Haor

    Opublikowany: 15.09.2024
  4. 📊 Data-Driven Decisions: ML in E-Commerce Forecasting with Federico Bacci

    Opublikowany: 15.08.2024
  5. 🚗 Driving Innovation: Machine Learning in Auto Claims Processing

    Opublikowany: 15.07.2024
  6. 🚑 ML in the Emergency Room with Ljubomir Buturovic

    Opublikowany: 10.06.2024
  7. 🌊 AI-Native with Idan Gazit – The future of AI products and interfaces + Getting AI to production

    Opublikowany: 16.05.2024
  8. 🍪 Machine Learning in the cookie-less era with Uri Goren

    Opublikowany: 18.04.2024
  9. 🛰️ Modern & Realistic MLOps with Han-chung Lee

    Opublikowany: 18.03.2024
  10. 🩻 AI in Medical Devices & Medicine with Mila Orlovsky

    Opublikowany: 15.02.2024
  11. ⏪ Making LLMs Backwards Compatible with Jason Liu

    Opublikowany: 15.01.2024
  12. 🔴 Live MLOps Podcast – Building, Deploying and Monitoring Large Language Models with Jinen Setpal

    Opublikowany: 6.09.2023
  13. Live MLOps Podcast Episode!

    Opublikowany: 28.08.2023
  14. ⛹️‍♂️ Large Scale Video ML at WSC Sports with Yuval Gabay

    Opublikowany: 7.08.2023
  15. 🤖 GPTs & Large Language Models in production with Hamel Husain

    Opublikowany: 20.06.2023
  16. 🫣 Is Data Science a dying job? with Almog Baku

    Opublikowany: 23.05.2023
  17. 🏃‍♀️Moving Fast and Breaking Data with Shreya Shankar

    Opublikowany: 30.03.2023
  18. 🚴‍♀️ Quick & Dirty Machine Learning with Noa Weiss

    Opublikowany: 21.02.2023
  19. ✍️ Building ML Teams and Platforms with Assaf Pinhasi

    Opublikowany: 23.01.2023
  20. 🎨 Stable Diffusion and generative models with David Marx

    Opublikowany: 19.01.2023

1 / 2

A podcast from DagsHub about bringing machine learning into the real world. Each episode features a conversation with top data science and machine learning practitioners, who'll share their thoughts, best practices, and tips for promoting machine learning to production

Visit the podcast's native language site