Towards Data Science
Podcast autorstwa The TDS team
Kategorie:
131 Odcinki
-
51. Adrien Treuille and Tim Conkling - Streamlit Is All You Need
Opublikowany: 16.09.2020 -
50. Ken Jee - Building your brand in data science
Opublikowany: 9.09.2020 -
49. Catherine Zhou - The data science of learning
Opublikowany: 2.09.2020 -
48. Emmanuel Ameisen - Beyond the jupyter notebook: how to build data science products
Opublikowany: 26.08.2020 -
47. Goku Mohandas - Industry research and how to show off your projects
Opublikowany: 19.08.2020 -
46. Ihab Ilyas - Data cleaning is finally being automated
Opublikowany: 12.08.2020 -
45. Kenny Ning - Is data science merging with data engineering?
Opublikowany: 5.08.2020 -
44. Jakob Foerster - Multi-agent reinforcement learning and the future of AI
Opublikowany: 29.07.2020 -
43. Ian Scott - Data science at Deloitte
Opublikowany: 22.07.2020 -
42. Will Grathwohl - Energy-based models and the future of generative algorithms
Opublikowany: 15.07.2020 -
41. Solmaz Shahalizadeh - Data science in high-growth companies
Opublikowany: 8.07.2020 -
40. David Meza - Data science at NASA
Opublikowany: 1.07.2020 -
39. Nick Pogrebnyakov - Data science at Reuters, and the remote work after the coronavirus
Opublikowany: 24.06.2020 -
38. Matthew Stewart - Data privacy and machine learning in environmental science
Opublikowany: 17.06.2020 -
37. Sean Knapp - The brave new world of data engineering
Opublikowany: 10.06.2020 -
36. Max Welling - The future of machine learning
Opublikowany: 3.06.2020 -
35. Rubén Harris - Learning and looking for jobs in quarantine
Opublikowany: 27.05.2020 -
34. Denise Gosnell and Matthias Broecheler - You should really learn about graph databases. Here’s why.
Opublikowany: 20.05.2020 -
33. Roland Memisevic - Machines that can see and hear
Opublikowany: 13.05.2020 -
32. Bahador Khalegi - Explainable AI and AI interpretability
Opublikowany: 6.05.2020
Note: The TDS podcast's current run has ended. Researchers and business leaders at the forefront of the field unpack the most pressing questions around data science and AI.