Data Science at Home
Podcast autorstwa Francesco Gadaleta

Kategorie:
268 Odcinki
-
What happens to data transfer after Schrems II? (Ep. 131)
Opublikowany: 4.12.2020 -
Test-First Machine Learning [RB] (Ep. 130)
Opublikowany: 1.12.2020 -
Similarity in Machine Learning (Ep. 129)
Opublikowany: 24.11.2020 -
Distill data and train faster, better, cheaper (Ep. 128)
Opublikowany: 17.11.2020 -
Machine Learning in Rust: Amadeus with Alec Mocatta [RB] (ep. 127)
Opublikowany: 11.11.2020 -
Top-3 ways to put machine learning models into production (Ep. 126)
Opublikowany: 7.11.2020 -
Remove noise from data with deep learning (Ep.125)
Opublikowany: 3.11.2020 -
What is contrastive learning and why it is so powerful? (Ep. 124)
Opublikowany: 30.10.2020 -
Neural search (Ep. 123)
Opublikowany: 23.10.2020 -
Let's talk about federated learning (Ep. 122)
Opublikowany: 18.10.2020 -
How to test machine learning in production (Ep. 121)
Opublikowany: 11.10.2020 -
Why synthetic data cannot boost machine learning (Ep. 120)
Opublikowany: 26.09.2020 -
Machine learning in production: best practices [LIVE from twitch.tv]
Opublikowany: 16.09.2020 -
Testing in machine learning: checking deeplearning models (Ep. 118)
Opublikowany: 4.09.2020 -
Testing in machine learning: generating tests and data (Ep. 117)
Opublikowany: 29.08.2020 -
Why you care about homomorphic encryption (Ep. 116)
Opublikowany: 12.08.2020 -
Test-First machine learning (Ep. 115)
Opublikowany: 3.08.2020 -
GPT-3 cannot code (and never will) (Ep. 114)
Opublikowany: 26.07.2020 -
Make Stochastic Gradient Descent Fast Again (Ep. 113)
Opublikowany: 22.07.2020 -
What data transformation library should I use? Pandas vs Dask vs Ray vs Modin vs Rapids (Ep. 112)
Opublikowany: 19.07.2020
Artificial Intelligence, algorithms and tech tales that are shaping the world. Hype not included.