Linear Digressions
Podcast autorstwa Ben Jaffe and Katie Malone

Kategorie:
289 Odcinki
-
Interview with Joel Grus
Opublikowany: 10.06.2019 -
Re - Release: Factorization Machines
Opublikowany: 3.06.2019 -
Re-release: Auto-generating websites with deep learning
Opublikowany: 27.05.2019 -
Advice to those trying to get a first job in data science
Opublikowany: 19.05.2019 -
Re - Release: Machine Learning Technical Debt
Opublikowany: 12.05.2019 -
Estimating Software Projects, and Why It's Hard
Opublikowany: 5.05.2019 -
The Black Hole Algorithm
Opublikowany: 29.04.2019 -
Structure in AI
Opublikowany: 21.04.2019 -
The Great Data Science Specialist vs. Generalist Debate
Opublikowany: 15.04.2019 -
Google X, and Taking Risks the Smart Way
Opublikowany: 8.04.2019 -
Statistical Significance in Hypothesis Testing
Opublikowany: 1.04.2019 -
The Language Model Too Dangerous to Release
Opublikowany: 25.03.2019 -
The cathedral and the bazaar
Opublikowany: 17.03.2019 -
AlphaStar
Opublikowany: 11.03.2019 -
Are machine learning engineers the new data scientists?
Opublikowany: 4.03.2019 -
Interview with Alex Radovic, particle physicist turned machine learning researcher
Opublikowany: 25.02.2019 -
K Nearest Neighbors
Opublikowany: 17.02.2019 -
Not every deep learning paper is great. Is that a problem?
Opublikowany: 11.02.2019 -
The Assumptions of Ordinary Least Squares
Opublikowany: 3.02.2019 -
Quantile Regression
Opublikowany: 28.01.2019
In each episode, your hosts explore machine learning and data science through interesting (and often very unusual) applications.