Linear Digressions

Podcast autorstwa Ben Jaffe and Katie Malone

Kategorie:

289 Odcinki

  1. Google Flu Trends

    Opublikowany: 26.03.2018
  2. How to pick projects for a professional data science team

    Opublikowany: 19.03.2018
  3. Autoencoders

    Opublikowany: 12.03.2018
  4. When Private Data Isn't Private Anymore

    Opublikowany: 5.03.2018
  5. What makes a machine learning algorithm "superhuman"?

    Opublikowany: 26.02.2018
  6. Open Data and Open Science

    Opublikowany: 19.02.2018
  7. Defining the quality of a machine learning production system

    Opublikowany: 12.02.2018
  8. Auto-generating websites with deep learning

    Opublikowany: 4.02.2018
  9. The Case for Learned Index Structures, Part 2: Hash Maps and Bloom Filters

    Opublikowany: 29.01.2018
  10. The Case for Learned Index Structures, Part 1: B-Trees

    Opublikowany: 22.01.2018
  11. Challenges with Using Machine Learning to Classify Chest X-Rays

    Opublikowany: 15.01.2018
  12. The Fourier Transform

    Opublikowany: 8.01.2018
  13. Statistics of Beer

    Opublikowany: 2.01.2018
  14. Re - Release: Random Kanye

    Opublikowany: 24.12.2017
  15. Debiasing Word Embeddings

    Opublikowany: 18.12.2017
  16. The Kernel Trick and Support Vector Machines

    Opublikowany: 11.12.2017
  17. Maximal Margin Classifiers

    Opublikowany: 4.12.2017
  18. Re - Release: The Cocktail Party Problem

    Opublikowany: 27.11.2017
  19. Clustering with DBSCAN

    Opublikowany: 20.11.2017
  20. The Kaggle Survey on Data Science

    Opublikowany: 13.11.2017

7 / 15

In each episode, your hosts explore machine learning and data science through interesting (and often very unusual) applications.

Visit the podcast's native language site